Learning a Hierarchical Embedding Model for Personalized Product Search

1Qingyao Ai, 1Yongfeng Zhang, 1Keping Bi, 2Xu Chen, 1W. Bruce Croft

1Center for Intelligent Information Retrieval, University of Massachusetts Amherst, MA, USA
{aiqy, yongfeng, kbi, croft}@cs.umass.edu
2School of Software, Tsinghua University, Beijing, China
xu-ch14@mails.tsinghua.edu.cn
Problem: Product Search

- **Product Search**: given a query submitted by a user, rank products so that the probability of a user purchase on one or multiple items in the result list can be maximized.
Personalization in Product Search

- Say I want a case for my phone and search “phone case”.

Best sellers

- **OtterBox COMMUTER SERIES Case for iPhone 7/8 Plus**
 - Rating: 4.5 stars
 - Price: $19.89 (prime)

- **iPhone 7 Plus Case, Matone Apple iPhone 7 Plus**
 - Rating: 4.5 stars
 - Price: $6.99 (prime)

- **Supcase Unicorn Beetle Hybrid Scratch Resistant Case for iPhone 5/5s**
 - Rating: 4.5 stars
 - Price: $15.99 (prime)

- **OtterBox DEFENDER SERIES Case for iPhone 5/5s**
 - Rating: 4.5 stars
 - Price: $18.95 (prime)

- **LifeProof FRE Waterproof Case for iPhone 6/6s**
 - Rating: 4.5 stars
 - Price: $36.59 (prime)

If I have an iphone

If I have an android phone.
Potentials of Personalization

- Purchase is a strong signal
 - Purchased items have high correlations with the user’s preference.

I purchased ...

I like ...
Potentials of Personalization

- Users write reviews for products.
 - Product reviews contain many details about user purchases.

A major design flaw: the headphone jack port opening. The added thickness on the top-end of the case creates enough of a gap to the Pixel's headphone jack that the metal insertion of certain headphones/aux cables will not be able to reach the jack to be inserted properly.

Saved my phone: I dropped my phone in the parking lot (3-foot fall) and it hit the pavement hard. Land on the corner, too! There is not a scratch on my Pixel. The case did suffer a crack from the fall, but I think that's from it absorbing and dispersing the impact force.
Potentials of Personalization

- Users write reviews for products.
 - Product reviews contain many details about user purchases.

A major design flaw: the headphone jack port opening. The added **thickness** on the top-end of the case creates enough of a gap to the Pixel's **headphone** jack that the metal insertion of certain **headphones/aux** cables will not be able to reach the jack to be inserted properly.

Saved my phone: I dropped my phone in the parking lot (3-foot fall) and it hit the pavement hard. Land on the corner, too! There is not a **scratch** on my Pixel. The case did suffer a **crack** from the fall, but I think that's from it absorbing and dispersing the impact **force**.
Potentials of Personalization

• Users write reviews for products.
 – Product reviews contain many details about user purchases.

A major design flaw: the headphone jack port opening. The added thickness on the top-end of the case creates enough of a gap to the Pixel's headphone jack that the metal insertion of certain headphones/aux cables will not be able to reach the jack to be inserted properly.

Saved my phone: I dropped my phone in the parking lot (3-foot fall) and it hit the pavement hard. Land on the corner, too! There is not a scratch on my Pixel. The case did suffer a crack from the fall, but I think that's from it absorbing and dispersing the impact force.
Pitfalls of Personalization

• Vocabulary mismatch
 – Queries vs. Product descriptions

Search for “colorful light bulbs”

...10W RGB Color Changing Dimmable LED Light Bulbs...
Pitfalls of Personalization

- Vocabulary mismatch
 - Queries vs. Product descriptions

Search for “colorful light bulbs”

...10W RGB Color Changing Dimmable LED Light Bulbs...
Pitfalls of Personalization

• Vocabulary mismatch
 – Queries vs. Product descriptions
 – Reviews vs. Reviews

Search for "colorful light bulbs"

...10W RGB Color Changing Dimmable LED Light Bulbs...

... this TV has a beautiful screen...

... it has a bright and colorful display...
Pitfalls of Personalization

• Vocabulary mismatch
 – Queries vs. Product descriptions
 – Reviews vs. Reviews

Search for “colorful light bulbs”

...10W RGB **Color Changing** Dimmable LED Light Bulbs...

... this TV has a **beautiful screen**...

... it has a **bright and colorful display**...
Pitfalls of Personalization

- **Data Sparsity**
 - Queries are formulated by users.
 - Items are purchased based on both query intents and user preferences.
 - Each user writes at most one review for a specific item.

\[
\text{not enough query per user}
\]

\[
\text{not enough item per } <u, q>\]

\[
\text{at most 1 review per } <u, i>\]

Users \rightarrow Queries

Reviews \leftarrow Items
Related Work

• Term-based Retrieval Model
 – Rank items based on the matching score between their descriptions and user’s queries [Nurmi et al., SIGIR’08].

\[
\text{score}(i, q) = \log p(i | q) \\
\propto \log p(i) + \log p(q | i)
\]

- **uniform distribution**
- **bag-of-words model (e.g. BM25, LM)**

No Personalization

Vocabulary Mismatch
Related Work

- **Latent Space Model**
 - Rank items based on the matching score between their descriptions and user’s queries [Gysel et al., CIKM’16].

```latex
tanh(W \cdot v + b)
```
Our Goal

Construct a *personalized* product retrieval model that maximizes the *probability of user purchases* in product search.
Optimization Objective

- Maximize user purchases in search
 - Rank items by $P(i|u, q)$
 - Maximize the likelihood of observed data:
 - User purchases
 - Review text

- Optimization objective

$$\mathcal{L}(R_u, R_i, u, i, q) = \log P(R_u, R_i, u, i, q)$$

u: user R_i: reviews for i

$\text{observed} < u, q, i >$ q: query

i: item R_u: reviews for u
Avoid Data Sparsity

• Problem 1: model of \(< R_{u,i,u,i} > \)
 – Reviews are dependent to users and items
 – Each user-item pair has at most 1 review.

• Assumption 1:
 The review words are generated from user models and item models independently.

\[
\mathcal{L}(R_u, R_i, u, i, q) = \log P(R_u, R_i, u, i, q)
\]
Avoid Data Sparsity

• Problem 2: model of $<u, q>$
 – Queries are dependent to users.
 – Items are dependent to users and queries.

• Assumption 2:

 Queries and users are independent. Item purchases are generated by the linear combination of query and user models.

$$
\mathcal{L}(R_u, R_i, u, i, q) = \log P(R_u, R_i, u, i, q) \\
= \log P(R_i|i) \cdot P(i|u, q) \cdot P(R_u|u, q) \cdot P(u, q)
$$
Avoid Vocabulary Mismatch

• Problem 3: model of term matching
 – Vocabulary gaps exist in queries and reviews.
 – Matching in semantic level is needed.

• Solution:

 Project words, users, items and queries into a latent space with embedding-based language models.
Avoid Vocabulary Mismatch

- Embedding-based language models:
 - Skip-gram models [Mikolov et al. arXiv’13, Le and Mikolov ICML’14]

\[
P(w|d) = \text{softmax}(\vec{w} \cdot \vec{d}) = \frac{\exp(\vec{w} \cdot \vec{d})}{\exp(\sum_{w' \in V_w} \vec{w'} \cdot \vec{d})}
\]
Avoid Vocabulary Mismatch

• Problem 3: model of term matching
 – Vocabulary gaps exist in queries and reviews.
 – Matching in semantic level is needed.

• Solution:

 Project words, users, items and queries into a latent space with embedding-based language models.

\[
P(R_u | u) = \prod_{w \in R_u} P(w | u)
= \prod_{w \in R_u} \frac{\exp(\vec{w} \cdot \vec{u})}{\sum_{w' \in \mathcal{V}_w} \exp(\vec{w'} \cdot \vec{u})}
\]
Hierarchical Embedding Model

\[
\begin{align*}
\mathcal{L}(R_u, R_i, u, i, q) &= \log \left(P(R_i|i)P(i|u, q)P(R_u|u) \right) \\
&= \log \left(P(i|\lambda q + (1 - \lambda)u) \right) + \sum_{w_i \in R_i} \log P(w_i|i) + \sum_{w_u \in R_u} \log P(w_u|u) \\
&\phi(w_q|w_q \in q) \quad \text{softmax}(\vec{w}_i \cdot \vec{i}) \quad \text{softmax}(\vec{w}_u \cdot \vec{u})
\end{align*}
\]
Query Model

\[w_u \in R_u \implies \]

\[w_q \in q \implies \phi\left(\begin{array}{c} w_q \\ w_q \\ w_q \end{array}\right) \rightarrow q \]

\[u \]

\[i \]

\[w_i \]

\[w_i \]

\[w_i \]

\[w_i \]

\[\iff w_i \in R_i \]

\[\text{Embedding look up} \]

\[[\text{Vulic and Moens, SIGIR'15}] \text{ Mean} \]

\[\phi(\{w_q | w_q \in q\}) = \frac{\sum_{w_q \in q} \bar{w}_q}{|q|} \]

\[[\text{Gysel et al., CIKM'2016}] \text{ Projected Mean (pm)} \]

\[\phi(\{w_q | w_q \in q\}) = \tanh(W \cdot \frac{\sum_{w_q \in q} \bar{w}_q}{|q|} + b) \]

\[[\text{Palangi et al., ASLP'16}] \text{ RNN-LSTM} \]

\[\phi(\{w_q | w_q \in q\}) = RNN(q) \]
Experiments

- Amazon Review Data [McAuley et al., SIGKDD’15]
 - 5-core data
 - Each user/item has at least 5 reviews

<table>
<thead>
<tr>
<th></th>
<th>Electronics</th>
<th>Kindle Store</th>
<th>CDs & Vinyl</th>
<th>Cell Phones & Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>#items</td>
<td>63k</td>
<td>62k</td>
<td>64k</td>
<td>10k</td>
</tr>
<tr>
<td>#users</td>
<td>192k</td>
<td>68k</td>
<td>75k</td>
<td>28k</td>
</tr>
<tr>
<td>#reviews</td>
<td>1,689k</td>
<td>982k</td>
<td>1,097k</td>
<td>194k</td>
</tr>
<tr>
<td>#words per reviews</td>
<td>118.27</td>
<td>112.21</td>
<td>174.57</td>
<td>93.50</td>
</tr>
</tbody>
</table>
• Query Extraction
 – [Rowley, Journal of consumer marketing 17] :

 Users search for “a producer’s name, a brand or a set of terms which described the category of the product”.

 – Extract queries from category information [Gysel et al., CIKM’2016] :
 • >1 level category hierarchies
 • Stop words and duplicated words removed

Category: Camera, Photo -> Digital Camera Lenses

Query: photo digital camera lenses
Experiments

• Test data
 – Randomly hold:
 • 30% reviews (purchased $<u,i>$ pairs)
 • 30% queries
 – All $<u, i, q>$ triples in test set have not been observed in training

• Metrics
 – Mean Average Precision (MAP)
 – Mean Reciprocal Rank (MRR)
 – Normalized Discounted Cumulative Gain (NDCG)
Experiments

• **Baselines**
 - *QL*
 • Query Likelihood Model [Ponte and Croft, SIGIR’98]
 - *UQL*
 • Extended Query Likelihood with User Models *UQL*
 - *LSE*
 • Latent Semantic Entity

• **Our models**
 - *HEM*$_{mean}$
 • Hierarchical Embedding Model with Mean
 - *HEM*$_{pm}$
 • Hierarchical Embedding Model with Projected Mean
 - *HEM*$_{RNN}$
 • Hierarchical Embedding Model with RNN

Source code can be accessed from https://ciir.cs.umass.edu/downloads/HEM/
Results

Retrieval performance:

<table>
<thead>
<tr>
<th>Model</th>
<th>Electronics MAP</th>
<th>Electronics MRR</th>
<th>Electronics NDCG</th>
<th>Kindle Store MAP</th>
<th>Kindle Store MRR</th>
<th>Kindle Store NDCG</th>
<th>CDs & Vinyl MAP</th>
<th>CDs & Vinyl MRR</th>
<th>CDs & Vinyl NDCG</th>
<th>Cell Phones & Accessories MAP</th>
<th>Cell Phones & Accessories MRR</th>
<th>Cell Phones & Accessories NDCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>QL</td>
<td>0.289</td>
<td>0.289</td>
<td>0.316</td>
<td>0.011</td>
<td>0.012</td>
<td>0.013</td>
<td>0.009</td>
<td>0.011</td>
<td>0.010</td>
<td>0.081</td>
<td>0.081</td>
<td>0.092</td>
</tr>
<tr>
<td>UQL</td>
<td>0.289</td>
<td>0.289</td>
<td>0.316</td>
<td>0.014</td>
<td>0.016</td>
<td>0.019</td>
<td>0.018</td>
<td>0.021</td>
<td>0.021</td>
<td>0.081</td>
<td>0.081</td>
<td>0.092</td>
</tr>
<tr>
<td>LSE</td>
<td>0.233</td>
<td>0.234</td>
<td>0.239</td>
<td>0.006</td>
<td>0.007</td>
<td>0.007</td>
<td>0.018</td>
<td>0.022</td>
<td>0.020</td>
<td>0.098</td>
<td>0.098</td>
<td>0.084</td>
</tr>
<tr>
<td>HEM<sub>mean</sub></td>
<td>0.071</td>
<td>0.071</td>
<td>0.091</td>
<td>0.015</td>
<td>0.019</td>
<td>0.018</td>
<td>0.029</td>
<td>0.035</td>
<td>0.034</td>
<td>0.047</td>
<td>0.047</td>
<td>0.053</td>
</tr>
<tr>
<td>HEM<sub>pm</sub></td>
<td>0.308</td>
<td>0.309</td>
<td>0.329</td>
<td>0.029</td>
<td>0.035</td>
<td>0.033</td>
<td>0.034</td>
<td>0.040</td>
<td>0.040</td>
<td>0.124</td>
<td>0.124</td>
<td>0.153</td>
</tr>
<tr>
<td>HEM<sub>RNN</sub></td>
<td>0.198</td>
<td>0.198</td>
<td>0.214</td>
<td>0.033</td>
<td>0.039</td>
<td>0.038</td>
<td>0.023</td>
<td>0.027</td>
<td>0.026</td>
<td>0.053</td>
<td>0.053</td>
<td>0.071</td>
</tr>
</tbody>
</table>

Observations:

- Electronics are easier than Kindle Store and CDs & Vinyl
 - The queries/reviews language correlation is high.
 - #reviews per item is high.
 - The taste of users varied less.
Results

- **Retrieval performance:**

<table>
<thead>
<tr>
<th>Model</th>
<th>Electronics</th>
<th>Kindle Store</th>
<th>CDs & Vinyl</th>
<th>Cell Phones & Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>MRR</td>
<td>NDCG</td>
<td>MAP</td>
</tr>
<tr>
<td>QL</td>
<td>0.289</td>
<td>0.289</td>
<td>0.316</td>
<td>0.011</td>
</tr>
<tr>
<td>UQL</td>
<td>0.289</td>
<td>0.289</td>
<td>0.316</td>
<td>0.014</td>
</tr>
<tr>
<td>LSE</td>
<td>0.233</td>
<td>0.234</td>
<td>0.239</td>
<td>0.006</td>
</tr>
<tr>
<td>HEM$_{mean}$</td>
<td>0.071</td>
<td>0.071</td>
<td>0.091</td>
<td>0.015</td>
</tr>
<tr>
<td>HEM$_{pm}$</td>
<td>0.308</td>
<td>0.309</td>
<td>0.329</td>
<td>0.029</td>
</tr>
<tr>
<td>HEM$_{RNN}$</td>
<td>0.198</td>
<td>0.198</td>
<td>0.214</td>
<td>0.033</td>
</tr>
</tbody>
</table>

- **Observations:**
 - Term-based models vs. Latent space models
 - Vocabulary mismatch varies on datasets.
 - HEMs work well in all cases above.
Results

• Retrieval performance:

<table>
<thead>
<tr>
<th>Model</th>
<th>MAP</th>
<th>MRR</th>
<th>NDCG</th>
<th>MAP</th>
<th>MRR</th>
<th>NDCG</th>
<th>MAP</th>
<th>MRR</th>
<th>NDCG</th>
<th>MAP</th>
<th>MRR</th>
<th>NDCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>QL</td>
<td>0.289</td>
<td>0.289</td>
<td>0.316</td>
<td>0.011</td>
<td>0.012</td>
<td>0.013</td>
<td>0.009</td>
<td>0.011</td>
<td>0.010</td>
<td>0.081</td>
<td>0.081</td>
<td>0.092</td>
</tr>
<tr>
<td>UQL</td>
<td>0.289</td>
<td>0.289</td>
<td>0.316</td>
<td>0.014</td>
<td>0.016</td>
<td>0.019</td>
<td>0.018</td>
<td>0.021</td>
<td>0.021</td>
<td>0.081</td>
<td>0.081</td>
<td>0.092</td>
</tr>
<tr>
<td>LSE</td>
<td>0.233</td>
<td>0.234</td>
<td>0.239</td>
<td>0.006</td>
<td>0.007</td>
<td>0.007</td>
<td>0.018</td>
<td>0.022</td>
<td>0.020</td>
<td>0.098</td>
<td>0.098</td>
<td>0.084</td>
</tr>
<tr>
<td>HEM<sub>mean</sub></td>
<td>0.071</td>
<td>0.071</td>
<td>0.091</td>
<td>0.015</td>
<td>0.019</td>
<td>0.018</td>
<td>0.029</td>
<td>0.035</td>
<td>0.034</td>
<td>0.047</td>
<td>0.047</td>
<td>0.053</td>
</tr>
<tr>
<td>HEM<sub>pm</sub></td>
<td>0.308</td>
<td>0.309</td>
<td>0.329</td>
<td>0.029</td>
<td>0.035</td>
<td>0.033</td>
<td>0.034</td>
<td>0.040</td>
<td>0.040</td>
<td>0.124</td>
<td>0.124</td>
<td>0.153</td>
</tr>
<tr>
<td>HEM<sub>RNN</sub></td>
<td>0.198</td>
<td>0.198</td>
<td>0.214</td>
<td>0.033</td>
<td>0.039</td>
<td>0.038</td>
<td>0.023</td>
<td>0.027</td>
<td>0.026</td>
<td>0.053</td>
<td>0.053</td>
<td>0.071</td>
</tr>
</tbody>
</table>

• Observations:
 – Relations between queries and words are non-linear
 • HEM_{mean} performed worst.
 • HEM_{pm} vs. HEM_{RNN} depend on data characteristics
Summary

• A task of personalized product search

• A Hierarchical Embedding Model
 – A latent space model
 – Jointly modeling users, items and queries with review data

• Key takeaways from the experiments
 – Personalization is important for product search
 – The need varies in different scenarios
Thanks for listening!

Thanks SIGIR travel grants for supporting the presentation of this work

aiqy@cs.umass.edu
http://www.cs.umass.edu/~aiqy/
https://ciir.cs.umass.edu/downloads/HEM/
Negative Sampling

- Proposed by Mikolov et al. [17], negative sampling is a technique that approximates the global objective of PV-DBOW by sampling “negative” terms from corpus:

\[
\ell = \sum_{w \in V_w} \sum_{d \in V_d} \#(w, d) \log(\sigma(\vec{w} \cdot \vec{d})) + \sum_{w \in V_w} \sum_{d \in V_d} \#(w, d) (k \cdot E_{w \sim P_V} [\log \sigma(-\vec{w} \cdot \vec{d})])
\]

- If we derived the local objective of a specific word-doc pair and let its partial derivative equal to zero. Then we have:

\[
\vec{w} \cdot \vec{d} = \log\left(\frac{\#(w, d)}{\#(d)} \cdot \frac{1}{P_V(w)} \right) - \log k
\]
Negative Sampling

- Approximates softmax with Negative Sampling:

\[\log P(w_i|i) = \log \sigma(\vec{w}_i \cdot \vec{i}) + k \cdot \mathbb{E}_{w' \sim P_w} [\log \sigma(-\vec{w}' \cdot \vec{i})] \]

\[\log P(w_u|u) = \log \sigma(\vec{w}_u \cdot \vec{u}) + k \cdot \mathbb{E}_{w' \sim P_w} [\log \sigma(-\vec{w}' \cdot \vec{u})] \]

\[\log P(i|u, q) = \log \sigma(\vec{i} \cdot (\lambda \vec{q} + (1 - \lambda) \vec{u})) \]

\[+ k \cdot \mathbb{E}_{i' \sim P_i} [\log \sigma(-\vec{i}' \cdot (\lambda \vec{q} + (1 - \lambda) \vec{u}))] \]
Appendix

Table 1: Statistics for the 5-core data for *Electronics, Kindle Store, CDs & Vinyl* and *Cell Phones & Accessories* [?].

<table>
<thead>
<tr>
<th></th>
<th>Electronics</th>
<th>Kindle Store</th>
<th>CDs & Vinyl</th>
<th>Cell Phones & Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of reviews</td>
<td>1,689,188</td>
<td>982,618</td>
<td>1,097,591</td>
<td>194,439</td>
</tr>
<tr>
<td>Review length</td>
<td>118.27±158.12</td>
<td>112.21±129.52</td>
<td>174.57±177.05</td>
<td>93.50±131.65</td>
</tr>
<tr>
<td>Number of items</td>
<td>63,001</td>
<td>61,934</td>
<td>64,443</td>
<td>10,429</td>
</tr>
<tr>
<td>Review per item</td>
<td>26.81±75.82</td>
<td>15.87±21.42</td>
<td>17.03±28.15</td>
<td>18.64±34.24</td>
</tr>
<tr>
<td>Number of users</td>
<td>192,403</td>
<td>68,223</td>
<td>75,258</td>
<td>27,879</td>
</tr>
<tr>
<td>Queries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of queries</td>
<td>989</td>
<td>4,603</td>
<td>694</td>
<td>165</td>
</tr>
<tr>
<td>Query length</td>
<td>6.40±1.64</td>
<td>7.07±1.89</td>
<td>5.71±1.62</td>
<td>5.93±1.57</td>
</tr>
<tr>
<td>Queries per item</td>
<td>1.02±0.23</td>
<td>5.08±2.04</td>
<td>4.04±1.92</td>
<td>1.11±0.38</td>
</tr>
<tr>
<td>Queries per user</td>
<td>8.13±5.84</td>
<td>35.65±37.48</td>
<td>21.75±16.53</td>
<td>4.95±2.60</td>
</tr>
<tr>
<td>Train/Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of reviews</td>
<td>1,275,432/413,756</td>
<td>720,006/262,612</td>
<td>804,090/293,501</td>
<td>150,048/44,391</td>
</tr>
<tr>
<td>Number of queries</td>
<td>904/85</td>
<td>3313/1290</td>
<td>534/160</td>
<td>134/31</td>
</tr>
<tr>
<td>Number of user-query pairs</td>
<td>1,204,928/5,505</td>
<td>1,490,349/232,668</td>
<td>1,287,214/45,490</td>
<td>114,177/665</td>
</tr>
<tr>
<td>Relevant items per pairs</td>
<td>1.12±0.48/1.01±0.09</td>
<td>1.87±3.30/1.48±1.94</td>
<td>2.57±6.59/1.30±1.19</td>
<td>1.52±1.13/1.00±0.05</td>
</tr>
</tbody>
</table>
Experiments

- Amazon product review datasets
- Queries are extracted from product category information

Table 1: Example queries extracted following the paradigm proposed by Gysel et al. [?] from Amazon product data.

<table>
<thead>
<tr>
<th>Electronics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- video games playstation accessory kit</td>
</tr>
<tr>
<td>- software operate system microsoft window</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kindle Store:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- store kindle ebook cookbook food wine bake dessert</td>
</tr>
<tr>
<td>- books health fitness weight loss diet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDs & Vinyl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- musical instrument general accessory sheet music folder</td>
</tr>
<tr>
<td>- digital music hard rock thrash speed metal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell Phones & Accessories:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- cell phone accessory international charger</td>
</tr>
<tr>
<td>- cell phone accessory case sleeve</td>
</tr>
</tbody>
</table>

aiqy@cs.umass.edu
Personalization Weights

Electronics

![Graph showing MAP versus lambda for Electronics](image)

Kindle Store

![Graph showing MAP versus lambda for Kindle Store](image)

CDs & Vinyl

![Graph showing MAP versus lambda for CDs & Vinyl](image)

Cell Phones & Accessories

![Graph showing MAP versus lambda for Cell Phones & Accessories](image)
Experiments

(a) Electronics (b) Kindle Store (c) CDs & Vinyl (d) Cell Phones & Accessories

SIGIR 2017, Tokyo, Japan aiqy@cs.umass.edu